Hydraulique appliquée

Numéro d'inventaire : 2025.0.147

Auteur(s): Michel Quellier

Type de document : travail d'élève

Imprimeur: "Ecole Centrale des Arts & Manufactures"

Période de création : 3e quart 20e siècle

Date de création: 1960-1961

Matériau(x) et technique(s) : papier vélin | crayon à bille

Description: Cahier à couverture cartonnée vert marbré et à dos toilé noir. Reliure cousue.

Gardes en papier épais vert. Réglure 8 x 8 mm sans interlignes et sans marge.

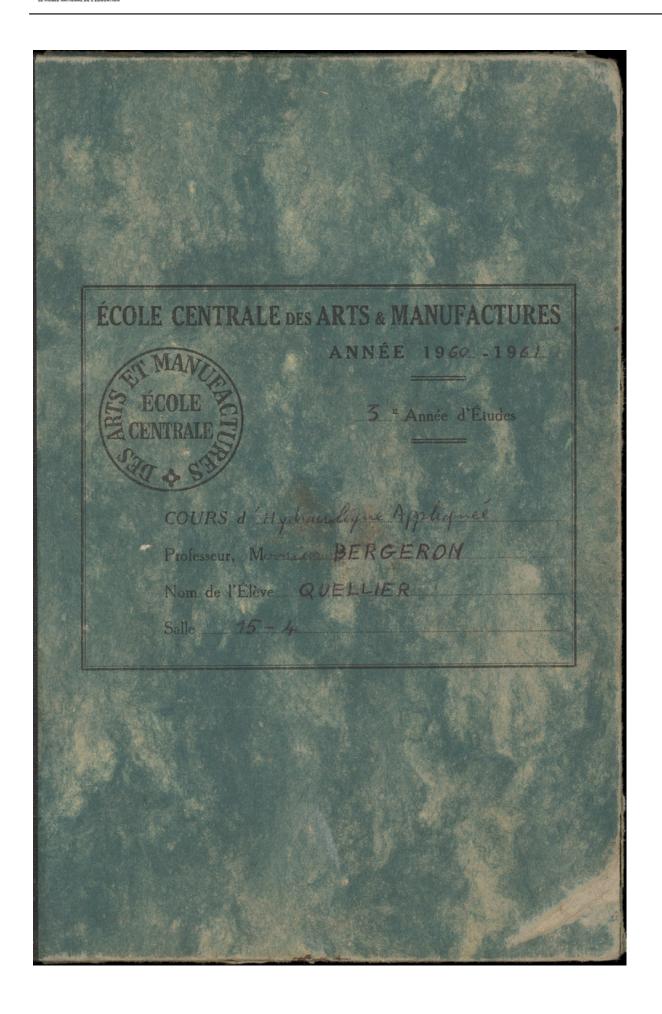
Mesures: hauteur: 22 cm; largeur: 17 cm

Notes: Il s'agit du cahier d'Hydraulique appliquée de Michel Quellier, élève centralien, à l'Ecole Centrale des Arts et Manufactures, rue Montgolfier à Paris (3e arrondissement), durant sa troisième année de 1960 à 1961. Nom du professeur inscrit : M. Bergeron.

Contenu Généralités : Pertes de charge, Pertes dues à l'influence des parois, Pertes singulières, Essais de machines hydrauliques, Mesure des débits Chapitre II Propriétés générales des turbomachines hydrauliques : Rappel des équations de base ; Différents organes ; Répartition des pressions ; Fonctionnement en régime varié - Pompe, Turbine ; Similitude ; Applications aux machines identiques ; La cavitation Chapitre III Pompes : Influence des angles à la montée de la roue ; Zone d'utilisation d'une pompe ; Evolution des pompes et de leurs caractéristiques ; Prédétermination des vitesses ; Particularités des pompes hélicos et hélices ; Ecoulement à la sortie de la roue ; Adaptation des pompes à différents régimes ; Couplage des pompes avec applications à la construction ; Détails de construction des pompes ; Installation Chapitre IV Turbines : Turbine à injection totale ; Turbine à injection partielle (Pelton) ; Choix d'installation d'une turbine Ecoulement en régime transitoire Coup de bélier d'onde La régulation

Mots-clés : Physique (post-élémentaire et supérieur)

Lieu(x) de création : Paris


Autres descriptions : Langue : Français

Nombre de pages : Non paginé

Commentaire pagination: 142 p. dont 85 p. manuscrites

1/4

2/4

Généralités
Théorème de Bernouilli
Q=SV
$\overline{\omega}h = \rho$
pression de 1 ^m de colonne d'eau = 0 ty 10
energie de pression = } energie potentielle energie d'allitude.
pression de 1 ^m de colonne d'eau = 0 ^{ty} , 10 energie de pression $\frac{\rho}{\omega}$ energie potentielle energie d'allitude. $\frac{1}{3}$ energie cinetique $\frac{1}{3}$ $\frac{\rho}{2}$ $\frac{1}{2}$
energie cinetique $\frac{1}{\omega} \left(\frac{V^2}{z} - \frac{\overline{\omega}}{\overline{\omega}} \frac{V^2}{zg} \right)$
$P = 3 + \sqrt{2} - cot$
$\frac{\rho}{\overline{\omega}} + \frac{3}{3} + \frac{v^2}{zg} = cst$
d'énergée de pression se transforme en energie d'altitude et
inversement
L'énergie potentielle setransforme en energie cinétique et innersement
Quanti toute l'énergie potentielle s'est
h transformée en énergie cinétique:
h transformée en évergire cinétique : $h = \frac{V^2}{2g}$ $V = \sqrt{2gh}$
les sont la conse'quence de la viseasité. Les couches
liquides glissent ance des vitesses différentes de vitesses différentes
dy dx
dsc

on	an esquime	$\overline{\xi}_o = \lambda' \varrho \frac{V}{z}$	2	
	1 h = 2	$\frac{\lambda'}{D} = \frac{\lambda'}{2g} = \frac{\lambda'}{2g}$	$\frac{\lambda}{D} \frac{v^2}{2g}$	$\lambda = 4\lambda'$
		encare valas	ble pour les	canouisc, en
Simi	litude pour	les élemen	ts en charge :	nombre de Reyntels
R = 1	u = v	trouve le	même nombe	de Reynolds,
	$\lambda = 4 \frac{T_o}{e^{\frac{V^2}{2}}}$	$= 4 \frac{u\left(\frac{du}{dy}\right)}{e^{\frac{V^2}{2}}}$	et à est le -)o = 4 m evD	
	forces de n		prepondérante.	
		0 0 5	$\lambda = \frac{6}{R}$	
Cour des		ynolds sujer		lement ne rente
	nt il app		Horts dus	
		parai con	uche laminei	se Jas
puis	couche turbulen	AL ,		

4/4