Numéro d'inventaire : 2025.0.76

Auteur(s): Michel Quellier

Type de document : travail d'élève

Période de création : 3e quart 20e siècle

Devoir de Mathématiques

Date de création : 1954

Matériau(x) et technique(s) : papier vergé | plume de métal

Description: Deux copies doubles non perforées, à réglure Séyès 8 x 8 mm avec marge rose. Pontuseaux verticaux et vergeures horizontales. Filigrane "Avia" avec la représentation d'une cigogne en vol. Une copie simple non perforée en papier vélin, à réglure Séyès 8 x 8 mm avec marge rose.

Mesures: hauteur: 22 cm; largeur: 17 cm

Notes: Il s'agit de la copie d'un devoir de mathématiques de Michel Quellier, élève en Première baccalauréat scientifique ou de classe de Mathématiques élémentaires (1ère C), scolarisé au lycée Marceau de Chartres durant l'année 1953-1954. L'évaluation remonte vendredi 09 avril 1954 et a été sanctionnée d'un 18/20.

Mots-clés : Calcul et mathématiques

Lieu(x) de création : Chartres

Autres descriptions : Langue : Français

Nombre de pages : Non paginé Commentaire pagination : 9 p.

	Michel	Vene	breoli g duril
	BG et EF ducarre BEFG DC est para	llile à AB	cotés apposés donc paralliles qui est
	parallèle a F est donc un p a ses deux co parallèles, on Les plans DBG parallèles pu	Les opposés a done DG que l'un	tiere DCFG me puisqu'il sigause et narallile à cF ont donc deux contient
3/	deux droites r deux droites r Les plans DCF parallèles ai u direction BE.	on parallis G, DCE B el ne même	les de l'autre. + BEFG sont lirection, la

1 mel	
to man	comme une ourface prismatique. Alors
dil	les triangles DBG et CEF, intersections des
	plans opn' les contiennent respectivement
	ance la surface prismatique, perment
	être considérés comme les bases du
	prione PBGCEF.
	BE est perpendienlaire à CB et à BG,
	il est donc perpendiculaire au plan CBG,
	et le triangle é 8 6 eat une section droite
	du prisme. Le volume du prisme ent
	alors égal au nombre qui mesure
	l'arête, c'est à dire: a, par l'aire de CBG
	V = CD x S (CBG). Le triangle CBG
	est rectangle 8 puisque GB est perpendien
	laire au plan ABCD, etant perpendiculaire à AB,
	I aire de CBG est donc: $S(KBG) = \frac{a \times a}{2} = \frac{a^2}{2}$ et $V = \frac{a \times a^2}{2} = \frac{a^3}{2}$
	S(KBG) = axa = ac
	et $V = a_1 \frac{a^2}{2} = \frac{a^3}{2}$
	2 2
	$V = \frac{\alpha^3}{3}$
	2/3
1	4 0 500 500 5
	Les plans DBG et CEF sont
	paralliles et sont coupés mar un
	meme traissième, le plan DAM, les

Guellie	7
7	CA étant perpendienlaire à DB et à BG
	est respendiculaire au plan DG5 et au
	plan I MIF. DB etc A se compent en leur
A	milien, la hanteur du tranc de
	/ pyramide est done $\frac{CA}{2} = \frac{a\sqrt{2}}{2}$.
	Comme BG est perpendiculaire au
	plan P, il est perpendiculaire à DB. DB
	est done la hauteur du triangle DJG qui
	a pour oire: 1 DB x JG. DB est la
	diagonale d'un courre de coté a , DB = a Vz. Les triangles ABJ et AEM sontsemblables
3	et l on a: $\frac{AB}{AE} = \frac{BJ}{EM} = \frac{2}{2} = \frac{BJ}{2}$
	d'ai B 3 = 2 et 5 6 = B 6 - B 3 = 2a-x
	$B = S(DSG) = \frac{1}{2} \times \frac{2a - x}{2} \times a\sqrt{2}$
	$B = \frac{a\sqrt{2}(2a-x)}{4}$
	Le triangle I MF peut se dé duire du triangle D 5 6 dans une lamothétie de centre K et de rapport $\frac{KF}{KO} = \frac{MF}{5G} = \frac{a-x}{2}$
	triangle D 5 6 dans une hamathétie de
	Centre K et de rapport == = = = = = = = = = = = = = = = = =