Livret de mathématique de la 4e vers la 3e

Numéro d'inventaire : 2024.0.282

Auteur(s) : Renée Polle Georges Henri Clopeau

Type de document : travail d'élève

Éditeur : Librairie Delagrave

Période de création : 3e quart 20e siècle

Date de création : 1972

Matériau(x) et technique(s) : | impression à jet d'encre

Description : Livret Couverture en papier cartonné et à reliure agrafée. Cahier intérieur en papier vélin. Impression à l'encre noire Corrigé Simple cahier en papier vélin à reliure agrafée,

sans couverture. Impression à l'encre noire et bleue.

Mesures: hauteur: 22 cm

largeur: 17 cm

Notes: Il s'agit d'un livret de mathématique de fin de collège avec son corrigé. Le contenu porte sur la révision des notions abordées en classe de quatrième, afin de faciliter l'entrée en classe de troisième (cf. Avant-propos). Chaque item de la table des matières consiste en un résumé de la notion suivi de plusieurs exercices à effectuer dans les espaces vides du livret. Le corrigé reprend exactement la pagination du livret. Les solutions sont imprimées en police manuscrite bleue dans les espaces de réponse prévus sur le livret.

Table des matières 1 Relations binaires et fonctions 2 Opérations dans D (décimaux relatifs) 3 Ordre dans D 4 Valeur absolue sur D 5 Intervalles ou encadrements dans D 6 Dans D* ou D+ encadrements de 1/d ou de racine d 7 Définition des nombres réels 8 Ordre sur R 9 L'addition dans R 10 La multiplication dans R 12 Groupe des puissances d'exposants entiers d'un réel non nul 13 Expressions algébriques 14 Fonctions polynômes 15 Développer un produit 16 Factoriser 17 Structure affine de la droite 18 Structure euclidienne de la droite 19 Structure affine du plan 20 Droites dans le plan 21 Milieu. Barycentre 22 Théorème de Thalès 23 Transformations ponctuelles

Mots-clés : Calcul et mathématiques **Autres descriptions** : Langue : Français

Nombre de pages : Mentionné

Commentaire pagination : Livret : 48 p. imprimées ; Corrigé 48 p. imprimées

1/4

COURS DE MATHÉMATIQUE P. VISSIO

R. POLLE

G.-H. CLOPEAU

PROFESSEURS DE MATHÉMATHIQUE

de la Vers la

LIVRET de MATHÉMATIQUE

---- CONTENANT

UN RÉSUMÉ DU COURS DE 4º

DES EXERCICES GRADUÉS

LE CORRIGÉ DE CES EXERCICES

LIBRAIRIE DELAGRAVE

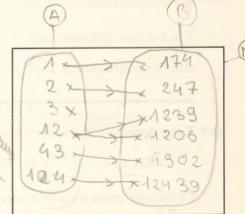
RELATIONS BINAIRES ET FONCTIONS

1

Parmi les relations binaires définies de l'ensemble $\mathbb A$ vers l'ensemble $\mathbb B$, les bijections jouent un rôle essentiel. Elles sont telles que : tout élément de $\mathbb A$ (ensemble de départ) a une image et une seule, et tout élément de $\mathbb B$ a un antécédent et un seul. La réciproque d'une bijection est une bijection. La composée de deux bijections est une bijection.

• De l'ensemble : A = { 1, 2, 3, 12, 43, 124 }

vers l'ensemble : $\mathbb{B} = \{247, 1206, 174, 12439, 4302, 1293\}$


tous deux sous-ensembles de \mathbb{N} , on définit la relation \mathcal{R} par : « ... est le nombre de centaines de _____ ».

Dessinez son diagramme sagittal.

Est-ce une application? Est-ce une bijection?

(Expliquez.)

Ce n'est pas une application car 3 va paso unage et 12 en a plusie.

Appelons variation d'un couple de nombres relatifs la valeur absolue de la différence de ses composantes.

Exemple : variation de (3, 5) = |3 - 5| = 2. On notera : V (3,5).

Complétez: V (6,11; 3,437) = $\pm 2,633$ V (-5,2; 3,84) = $\pm 3,09$

De l'ensemble $\mathbb E$ de couples :

$$\mathbb{E} = \{ (3,73; -0,27), (19,42; 16,82), (6,01; 10,01), (-11,1; -6) \}$$

vers l'ensemble \mathbb{F} de nombres : $\mathbb{F} = \{2,6;4;-1,09;5,1\}$, on définit la relation : « ... a pour variation _____ ».

© Delagrave, 1972.

1

4 5,Λ	X			11) (-11,1; -6)
5,1			X	
01				X
2,6		X		
-1,09				de E possido
		ui 4 sus Pa P	dent, calculez :	Z CAO326
V (2	(a, 6) = -4	V(2, 9) = -1 V	(9, 6) = _3_ V (2, 9) + V (9, 6) = A es signes : \leq , =, \geq
V (2 Compare	(a, 6) = -4	V(2, 9) = -1 V ere somme à $V(2, 6)$	(9, 6) = _3_ V (
V (2 Compare _V(2) Recomm V (-4,	ez cette derniè $ \begin{array}{c} (a, 6) = -4 \\ (a) \\ (b) \\ (c) $	$V(2, 9) = -\frac{7}{4}$ Vore somme à $V(2, 6)$ $V(2, 6)$ $V(3, 6)$ $V(4, 6)$ $V(6, 6)$	(9, 6) = -3 V () à l'aide de l'un d , 3) = -3 V (-	es signes : \leq , =, \geq
V (2 Compare _V(2,4 Recomm V (-4, 3	ez cette derniè $ \begin{array}{c} (a, 6) = -4 \\ (a) \\ (b) \\ (c) $	$V(2, 9) = -\frac{7}{4}$ Vore somme à $V(2, 6)$ $V(2, 6)$ $V(3, 6)$ $V(4, 6)$ $V(6, 6)$	(9, 6) = -3 V () à l'aide de l'un d , 3) = -3 V (-	es signes : \leq , =, \geq
V (2 Compare V (2,4 Recomm V (-4,4	ez cette derniè ez cette derniè ez cette derniè ez cette derniè ex vec : $ a_1 = b_1 = b_2 = b_1 = b_2 = b_2$	$V(2, 9) = -\frac{7}{4}$ Vore somme à $V(2, 6)$ $V(2, 6)$ $V(3, 6)$ $V(4, 6)$ $V(6, 6)$	(9, 6) = -3 V () à l'aide de l'un d , $(3) = -3$ V (- (-4, 3)	es signes : <, =, >

4/4