

mathématiques

Numéro d'inventaire : 2015.27.40.17

Auteur(s) : Antoinette Léon

Type de document : travail d'élève

Période de création : 1er quart 20e siècle

Date de création : 1924

Matériau(x) et technique(s) : papier ligné

Description: Réglure simple 8 mm. Manuscrit encre noire et crayon papier.

Mesures: hauteur: 22,6 cm; largeur: 17,5 cm

Notes: Devoir du 5 février 1924. - Trouver la dérivée d'une fonction; - Former l'équation du second degré qui a pour racines les côtés de l'angle droit d'un triangle rectangle, sachant que l'hypoténuse est égale à a, le rayon du cercle inscrit est égal à r. Existe-t-il toujours un triangle

rectangle remplissant ces conditions? Mots-clés : Calcul et mathématiques

Filière : Lycée et collège classique et moderne

Niveau: Post-élémentaire **Élément parent** : 2015.27.40

Autres descriptions : Pagination : non paginé

Commentaire pagination: 8 p.

Langue: français

Lieux: Paris

1/2

Antonulte Les	n C Se 5 feivrier 1924
1:	brower la dérivée de la fonction. y = 3 x ³ + 5 x ² + 2 x = 1
	donnons a x un accroissement $\Delta x = h$ la valeur fin ale de x est $x + h$ pour un accroissement $\Delta x = h$ de la variable x , il en resulter a pour y un accroissement $\Delta y = K$ la valeur fin ale de la fonction est. y + k = 3 (x + h) ³ + 5 (x + h) ² + 2 (x + h) - 1 y + k = 3 x ³ + 3h ³ + 9 x ² h + 9h ² x + 5 x ² + 5h ² + 10 xh + 2e
	+ 2h - 1 l'accrossement K de y est l'excesde la valeur priale de la fonction sur la valeur initiale: K = 3 x 3 + 3 h 3 + 9 x 2h + 9 h 2 x + 5 x 2 + 5 h 2 + 10 x h + 2a + 2h - 1 - 3 x 3 -5 x 2 - 1x + 1 K = 3 h 3 + 9 x 2h + 9 h 2 x + 10 x h + 5 h 2 + 2h
	$\frac{x}{h} = \frac{3h^2 + 9x^2 + 9hx + 10x + 5h + 2}{h}$ limite $\frac{x}{h} = \frac{y}{3} = \frac{9x^2 + 10x + 2}{3}$

2/2