Turbo-Machines Droit

Numéro d'inventaire : 2025.0.120

Auteur(s): Michel Quellier

Type de document : travail d'élève

Imprimeur: "Ecole Centrale des Arts & Manufactures"

Période de création : 3e quart 20e siècle

Date de création: 1959-1960

Matériau(x) et technique(s) : papier vélin | crayon à bille

Description: Cahier à couverture cartonnée vert marbré et à dos toilé noir. Reliure cousue.

Gardes en papier épais vert. Réglure 8 x 8 mm sans interlignes et sans marge.

Mesures: hauteur: 22 cm; largeur: 17 cm

Notes: Il s'agit du cahier de Turbomachines thermiques, ainsi que du cahier de Droit de Michel Quellier, élève centralien, à l'Ecole Centrale des Arts et Manufactures, rue Montgolfier à Paris (3e arrondissement), durant sa deuxième année de 1959 à 1961. Nom du professeur inscrit : M. Sedille. Nom du professeur inscrit : M. Samsoen.

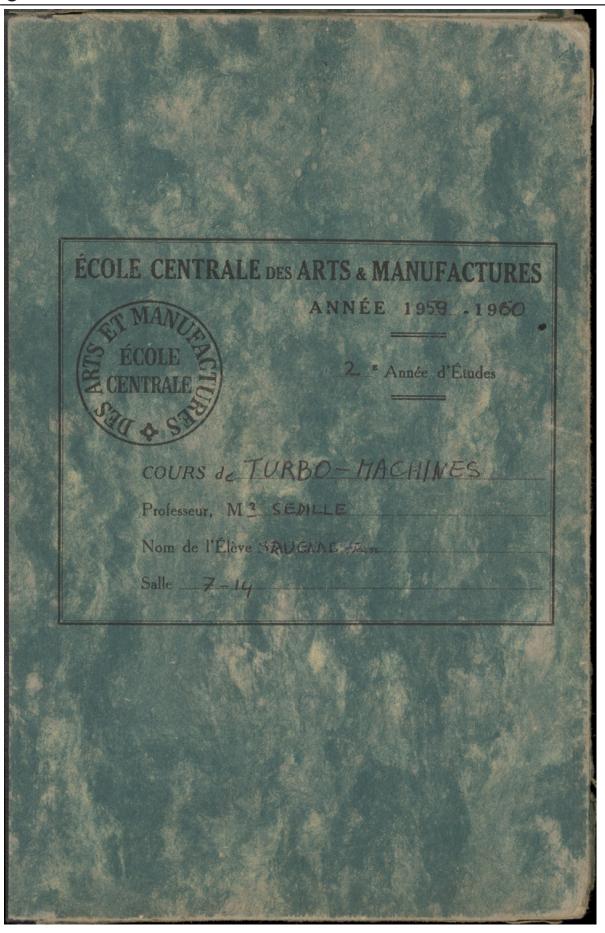
Contenu Turbomachines thermiques _ Relations générales concernant les turbomachines : Théorème d'Euler ; Théorème de Bernoulli en mouvement relatif ; Grilles d'aubes persiennes _ Rappels de thermodynamique et sur la transformation énergie calorifique et énergie mécanique _ Propriétés de la vapeur d'eau _ Diagramme entropique - Diagramme de Mollier _ Mécanique des fluides compressibles : Théorème de Saint-Venant ; Ecoulement adiabatique sans frottement dans un aubage fixe ; Forme des tuyères de détente ; Détente de la vapeur saturée ; Tuyères réelles - Influence du frottement _ Cellules élémentaires des turbines à action : Degré de réaction ; Tracé d'un étage de roue simple à action ; Tracé et rendement d'un étage de roue simple à action ; Choix de l'angle de sortie Béta2 ; Calcul de la hauteur des ailettes mobiles ; Influence des pertes par frottement de disque sur le rendement -étage à réaction ; Roue double sans frottement ; Equivalence d'une roue multiple en roue simple ; Répartition des puissances ; Etages de vitesse - Turbine Curtiss - Roue double en tête _ Calcul d'une turbine à action multicellulaire _ Phénomènes vibratoires dans les turbines _ Organes de régulation et de sécurité des turbines à vapeur

Contenu Droit _ Protection des découvertes, inventions et réalisations techniques : Brevet d'invention ; Protection des réalisations techniques non brevetées ; La brevetabilité ; Restrictions ; Certificat d'addition ; Durée des brevets ; L'Institut International des Brevets de la Haye ; Protection des découvertes et inventions des autres pays ; La Convention de Paris du 20 mars 1883 et ses révisions _ Modalités intervenant dans la propriété et l'exploitation des brevets : Copropriété ; Cession et apport en société des brevets d'invention ; Droits des employés sur leurs inventions ; Licences totales ou partielles, exclusives ou non exclusives ; Action en remédiation ; Licences obligatoires _ Nullités et déchéances des brevets : distinction : Nullité pour défaut de nouveauté ; Nullité pour insuffisance dans la description ; Autres cas de nullité ; Conséquence d'une nullité totale ou partielle - Relativité de l'autorité de la chose jugée _ Répression de la contrefaçon : Caractère pénal de la loi et les sanctions ; Distinction entre les divers délits ; Modes de preuves : la description avec ou sans saisie ; Les sanctions civiles ; La prescription de l 'action ; Réparations pour poursuites abusives _ La rédaction des brevets

1/6

Les ingénieurs-conseils en propriété industrielle _ Protection des créations esthétiques industrielles : Objet et étendue de la protection ; Protection cumulative des créations esthétiques par les lois sur la propriété esthétique en général, les objets industriels en particulier ; Cloison étanche entre le domaine de l'utilité et le domaine de la fantaisie créatrice ; La preuve de la date de la création et le dépôt de la loi de 1909 ; Les poursuites ne contrefaçon; Protection dans les autres pays: le droit de priorité, le dépôt international Protection du patrimoine industriel conte les abus de la concurrence : Distinction entre les notions de marque de fabrique, de nom commercial, d'enseigne ; Marques de fabrique et de commerce; Protection du nom commercial; Protection des appellations d'origine et de provenance ; Répression des fraudes ; Répression de la concurrence déloyale et de la concurrence illicite Droit public et droit privé Domaines respectifs : Définition ; Sujets de droit ; Droit public ; Droit privé ; Le recours en droit public ; Juridictions en droit public : Conseil d'Etat, tribunaux administratifs Juridictions administratives judiciaires, Juridictions de droit privé : Tribunaux de droit commun ; Tribunaux d'exception ; Place particulière des juridictions pénales ; Le principe du double degré de juridiction - Ses exceptions ; Le rôle de la Cour de Cassation ; Conflits de juridiction et de compétence entre juridictions de droit public La preuve en justice : Le rôle prééminent ; A qui incombe la charge de la preuve ; Les interdictions ; Présomptions légales : Modes de preuves admis

Mots-clés : Mécanique (comprenant la dynamique des fluides)


Droit et sciences économiques **Lieu(x) de création** : Paris

Autres descriptions : Langue : Français

Nombre de pages : Non paginé

Commentaire pagination: 198 p. dont 122 p. manuscrites

Relations générales concernant les turbo-machines
Classification
- nature du fluide - troyet du fluide -> - fonction de la machine - mode d'action du fluide
- foretion de la machine - made d'action du fluide
Théorème d'Euler.
() that is VI (you say V) We got) I have a
A a B: turbo-machine.
A a B: turbo-machine.
A (·)
Los que la souli est soulle tis sout a ti et
permanent, appliquer le théorème de Bernouilli
permanent, appligner le théorème de Bernouilli $ Z_{S} + \frac{P_{S}}{\varpi} + \frac{V_{S}^{2}}{Z_{S}} = Z_{A} + \frac{P_{A}}{\varpi} + \frac{V_{A}^{2}}{Z_{S}} + \frac{S_{S}}{S_{A}} $ $ S_{A} \text{ parte de charge de S en A} $ $ S_{A} \text{ parte de charge de S en A} $ Re même de B en I: $ Z_{A} + \frac{P_{A}}{\varpi} + \frac{V_{A}^{2}}{Z_{S}} = Z_{S} + S_{S} $
soit: $Z_0 + \frac{\rho_A}{z} = Z_0 - \frac{\zeta_0}{\zeta_0}$
De même de Ben I:
$Z_{B} + \frac{\ell_{B}}{\overline{\omega}} + \frac{V_{B}^{2}}{y} = Z_{1} + S_{BI}$
$\left(z_{A} + \frac{\rho_{A}}{\overline{\omega}} + \frac{v_{A}^{2}}{v_{g}}\right) - \left(z_{B} + \frac{\rho_{B}}{\overline{\omega}} + \frac{v_{B}^{2}}{v_{g}}\right) = \left(z_{S} - z_{1}\right) - \xi_{SA} - \xi_{B}$
rg) o w rg)
Ps origine des pressions Vs ~ 0 V_ ~ 0

Etude de la roue - Pomaine mobile
sortie 9 V. /21
c ry si
on repeut appliquer Bernouilli à l'écoulement à
l'interieur de la roue mobile (passage de metal et de fluide).
théorème des moments des quantités de mouvement.
debit musse constant = e Q (Q debit valume)
PQ dt (V2 22 cos d2 - V1 21 cos d2) =
PQ (Vz rz cosaz - V1 z, cos a1) = 1 comple des pression/s. =0
Couple des pressions/52 =0
comple des pressions/surflimite=0
action des aules sur le fluide
= - Conglemateur
$C_m = eQ(V, r, cos\alpha, -V_r r_c cos\alpha_r)$
Dans une machine à fluide compressible e Q = estre
I = debit paids
$C_{m} = \frac{\Gamma}{g} \left(V_{1} r_{1} \cos x_{1} - V_{2} r_{2} \cos x_{2} \right)$
Si la machine n'est pas radiule, récessité d'opérer
pour un flet et d'intégrer
Pour une machine généralise (pompe, ventibleur) $C_m = \frac{I}{g} \left(V_2 r_2 \cos \alpha_2 - V_3 r_4 \cos \alpha_4 \right)$
$C_m = \frac{1}{g} \left(\sqrt{2} r_2 \cos \alpha_2 - V_1 r_1 \cos \alpha_1 \right)$