Admission aux centres PEGC

Numéro d'inventaire : 2024.0.120 Auteur(s) : Chantal Carpentier Type de document : travail d'élève

Période de création : 4e quart 20e siècle

Date de création : 1973

Matériau(x) et technique(s) : papier | encre noire

Description : Quatre copies doubles d'examen à simple lignage avec partie supérieure à

massicoter.

Mesures: hauteur: 31,1 cm

largeur: 24 cm

Notes: Il s'agit de la copie d'examen au concours d'entrée dans les centres PEGC (Professeur d'Enseignement Général de Collège), de la candidate Chantal Carpentier. L'auteur est alors élève en baccalauréat C (Mathématiques et physique-chimie), catégorie 2 section 3. L'épreuve est une composition de mathématiques. Le centre d'examen est l'ENF ou ENI (Ecole Normale de Filles ou Ecole Normale d'Institutrices) se situant au 09, rue de Lille à Rouen. L'épreuve se déroule le 02 mai 1973. La note obtenue est de 09/20, la moyenne du lot de copies dont elle est issue est de 09,75/20.

Mots-clés : Compositions et copies d'examens

Formation initiale et continue des maîtres (y compris conférences pédagogiques), post-

élémentaire

Lieu(x) de création : Rouen

Autres descriptions : Langue : Français

Nombre de pages : Non paginé

Commentaire pagination: 16 p. dont 13 p. manuscrites

Objets associés : 2024.0.126

1/4

	Nom et Prénom : CARPENTIER CHANTAL N° d'inscription : 53 Centre d'examen : Ecde Normale, 9 xue de Lille -
	collez ici après avoir rempli] l'en-tête
Visa du Correcteur	Examen: Admission aux centres de PEGC Session: de 1973. Spécialité ou Série: xientifique C. Si votre composition comporte plusieur feuillets. numérotez-les 1/
Note:	Composition de MATHENATIQUES.
a see and	Exercice I. La suite des puissances de 4 dans = at l'ensemble défini par l'orsque n décrit IN; tinsi: 4 = 4 mod 5 4 = 4 mod 5 4 = 4 mod 5, or 16 = 3x5+4 donc 16 = 4 mod 5, et
	Jelon que la puissance n de 4 est poire ou impoire, 4 estégate à la classe d'équivalence 4 ou et à la desse 4 modulo 5: Y n E OV 1 2 mod. 5 Conclusion:
	La ruite des paissances de 4 dans II/ se définit ainsi: V n EN, 4 = 4 mod 5 En déducire que 24P+I + 3 est divisible par 5: Cherchens à quei est conques 24P+I + 3 modulo 5.
N. B	Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer la provenance de la copie.

240+2 peut également se mettre sous la forme & x2+3 ou en- care 420 x2 x+3, quel que soit p 20 x mod 5 donc 420 x2 x mod 5 et 420 x2 x mod 5 et 420 x2 x mod 5 donc: quel que soit p entier naturel, 420 x2 x3 sot divisible pare 5. Et Comme toujous quel que soit p, 240+2 x3 est divisible pare 5. déduisons que: pour tout p entier naturel, 240+2 x3 est divisible. pour tout p entier naturel, 240+2 x3 est divisible. pour tout p entier naturel, 240+2 x3 est divisible.
etiso Pinito?

	Nom et Prénom : CARPENTIER CHANTAL	
	N° d'inscription : 53 _ Centre d'examen : 9 _ sue de hitle Rouen.	
collez ici après avoir remplij l'en-tête		
Visa du Correcteur	Examen: administra oux centres de PEGC Session: de 1973 Si votre composition comporte plusieurs feuillets.	
Note:	Composition de MATHEMATIQUES.	
20		
	(3) Etadier la Jonetiers J_3 correspondant à $m=3$. $x \mapsto J_3(x) = x^2 - 3x + 3$ $x^2 + 4x = 4$ La Jonetiers J_3 est définie pour tout x tolque $x^2 + 4x - 4 \neq 0$, soit $x \mapsto différent de (-2 - 4\sqrt{2})$ et $de(-2 + 4\sqrt{2})$	
	donc son ensemble de Définition D3 est: D3 = TR-{-2.272, -2.272} Continuité: La Jenction 1 (a) étant le rapport de deux Jenctions polynômes continues sur TR, est continue sur chacun des	
	13 est continue sur] - 00, -2 2 12 [v] 2-2 12, 2+2 12 [v] -2+2 12, +00[
	Dérivabilité: f_3 est dérivable en tout point de son uneamble de Définition. (aluleurs donc son sa dérivée f_3' :	
	$\frac{4'}{3}(\alpha) = \frac{(4\alpha - 3)(x^{2} + 4x - 4) - (4\alpha + 4)(x^{2} - 3x + 3)}{(x^{2} + 4x - 4)^{2}}$	
	$\begin{cases} \frac{1}{3}(x) = \frac{2x^3 + 8x^5 - 8x - 3x^5 - 4200 + 42 - 4x^3 + 6x^5 - 6x - 4x^5 + 4200 - 12}{(x^5 + 4x - 4)^5} = \frac{1}{(x^5 + 4x - 4)^5} = \frac{1}{(x^5 + 4x - 4)^5}$	
N. B Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer la provenance de la copie.		