Certificats d'Etudes Supérieures. Université de Lille, Faculté des sciences. Session de mai-juin 1967.

Numéro d'inventaire : 1999.01421 Type de document : imprimé divers Éditeur : Université de Lille (Lille)

Date de création : 1966

Description : Feuilles simples de couleur agrafées par épreuves.

Mesures: hauteur: 310 mm; largeur: 210 mm

Notes : Intitulés des différentes épreuves du Certificat d'Etudes Supérieures.

Mots-clés : Examens et concours : publicité et sujets

Calcul et mathématiques

Filière : Université **Niveau** : Supérieur

Nom de la commune : Lille Nom du département : Nord

Autres descriptions : Langue : Français

Nombre de pages : 35 **Lieux** : Nord, Lille

1/4

UNIVERSITE DE LILLE

FACULTE DES SCIENCES

SESSION DE MAI/JUIN 1967

CERTIFICAT D'ETUDES SUPERIEURES

de MATHEMATIQUES II

Epreuve de Calcul Différentiel

---) Il sera tenu grand compte de l'énoncé précis des théorèmes utilisés)

On considère les deux espaces normes suivants :

$$E = \mathbb{R}^3_{m}$$
 (coordonnées u, v, w); $F = \mathbb{R}^3_{M}$ (coordonnées x, y, z)

$$\|\mathbf{m}\|^2 = \mathbf{u}^2 + \mathbf{v}^2 + \mathbf{v}^2$$
; $\|\mathbf{M}\|^2 = \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{r}^2$

On désigne par U l'ouvert complémentaire de l'origine dans \mathbb{R}^3_M . Dans \mathbb{R}^3_M on considère la forme différentielle

 Ψ = x d y \wedge dz + ydz \wedge dx + zdx \wedge dy

$$\psi = x d y \wedge dz + ydz \wedge dx + zdx \wedge dy$$
et dans U on considère la fonction
$$q(M) = \frac{1}{(x^2 + y^2 + z^2)} = \frac{1}{r^3}$$
On posse $W = qW$

On pose W = g W.

a) Soit S la sphère $x^2 + y^2 + z^2 = p^2$ orientée comme bord de la boule de rayon ρ . Enoncer la formule de Stokes, et en déduire l'intégrale : en déduire

Pourrait-on calculer directement la seconde intégrale à l'aide de la formule de Stokes ?

- b) Montrer que $d\omega = 0$
- c) Soit Ω un ouvert de \mathbb{R}^3_m et soit D $\subset \Omega$ un compact dont l'intérieur, non vide, est muni de l'orientation canonique de R 3 et dont le bord l' est une surface assez régulière pour que la formule de Stokes soit applicable.

Soit f une application de classe C^2 de Ω dans \mathbb{R}^3_{M} telle que f([) C U; on pose:

I (f, Γ) = ∬f *ω

Montrer, sans aucun calcul, que si f (D) CU (c'est-à-dire si la fonction vectorielle f n'a pas de zéros dans D) on a I (f, \(\gamma\)) = 0

d) On suppose que la restriction f_D de f à D est un difféomorphisme de classe C^2 sur la boule $\|M\| \leqslant P$ (c'est-o-dire que f_D est biunivoque, f_D et f_D^{-1} étant de classe C^2). Montrer que, dans ce cas .../...

UNIVERSITE DE LILLE
FACULTE DES SCIENCES

SESSION DE SEPTEMBRE / OCTOBRE 1966

CERTIFICAT D'ETUDES SUPERIEURES

de MECANIQUE GENERALE

Durée de l'épreuve : 4 heures

- ---) Les deux questions sont indépendantes. Elles devront être traitées sur des feuilles séparées, de couleurs différentes : blanche pour la première, saumon pour la seconde.
- I.- Un losange A B C D, formé de quatre barres égales et homogènes réunies par des articulations, se meut dans un plan horizontal π , le sommet A étant maintenu fixe. On suppose tous les frottements négligeables. A l'instant initial la figure A B C D est un carré et, toujours à l'instant initial, les vitesses angulaires des barres A B et A D sont égales respectivement à ω_1 , et ω_2 . On désigne par θ_1 et θ_2 les angles que font à un instant t quelconque les barres A B et A D avec un axe fixe A x du plan π . La longueur d'une barre est ℓ et sa masse est m.
 - 1) Calculer l'énergie cinétique du système formé par les quatre barres.
- 2) Ecrire les équations différentielles du mouvement de ce système et obtenir deux intégrales premières. Trouver l'équation différentielle de la forme $\left(\frac{d \varphi}{dt}\right)^2 = f(\varphi)$ satisfaite par l'angle \widehat{B} \widehat{A} $\widehat{D} = \varphi$. Quelle est la condition que doivent vérifier ω_1 et ω_2 pour que durant le mouvement φ possède un maximum ?
- II.- Un solide S, homogène et pesant, est de révolution par rapport à un axe 0 z, et le point 0 de cet axe est maintenu fixe, cette liaison étant réalisée sans frottement. Il n'y a pas d'autres forces données que le poids. On désigne par 0 x₁ y₁ z₁ les axes fixes, 0 z₁ étant la verticale ascendante, et par 0 x y z les axes liés à S, 0 z étant orienté dans le sens qui va de 0 vers le centre d'inertie G de S. Soient M le point de S de coordonnées 0, 0, 1 par rapport aux axes 0 x y z, P la projection de M sur le plan horizontal 0 x₁ y₁, et enfin x₁ et y₁ les coordonnées du point P par rapport aux axes 0 x₁ y₁.../...

MECANIQUE GENERALE - SEPTE. / OCT. 1966

- 2 -

La masse du solide S est m, ses moments principaux d'inertie en O sont A, A, C, et on a O G = ℓ .

1) Calculer les composantes \mathcal{L}_{x_1} et \mathcal{L}_{y_1} par rapport aux axes 0 x_1 et 0 y_1 du moment cinétique \mathcal{L}_{x_1} de S par rapport au point 0. Montrer que \mathcal{L}_{x_1} et \mathcal{L}_{y_1} s'expriment sous la forme suivante :

$$\mathcal{C}_{y_1} = F y_1' + G x_1 + H y_1,$$

$$\mathcal{C}_{y_1} = P x_1' + Q x_1 + R y_1,$$

F, G, H et P, Q, R étant des fonctions de l'angle d'Euler θ et de θ ', fonctions que l'on déterminera. On utilisera le résultat donné par la troisième équation d'Euler.

2) Le solide S se meut de telle façon que l'axe 0 z reste au voisinage de l'axe 0 z_1 . Ecrire les équations approchées du mouvement en prenant pour inconnues x_1 et y_1 (On prendra $\theta > 0$ dans $\theta < 0$ et $\theta < 0$). Montrer que ces équations forment un système différentiel linéaire, à coefficients constants. Intégrer ce système. (On posera $w = x_1 + i y_1$).

3) Le solide S effectue toujours le mouvement du paragraphe précédent.

A l'instant initial on donne à S une rotation autour de 0 z de vitesse angulaire

r et on suppose que l'on a

$$r_o^2 > \frac{4 \text{ Amgl}}{c^2}$$
,

du mouvement de P sur l'ellipse E.

Montrer que la trajectoire du point P est une ellipse E de centre O, qui tourne

autour de 0 avec une vitesse angulaire $\omega = \frac{C_0}{2 \text{ A}}$. Déterminer la période T

-000-