Devoir de Physique et Chimie

Numéro d'inventaire: 2015.27.35.4

Auteur(s) : Antoinette Léon

Type de document : travail d'élève

Période de création : 1er quart 20e siècle

Date de création : 1924

Matériau(x) et technique(s) : papier

Description: Réglure simple 8 mm. Manuscrit encre noire et rouge.

Mesures: hauteur: 22,5 cm; largeur: 17,5 cm

Notes : Devoir du 7 novembre 1924. Physique : relation entre température, pression et volume; utilisation de l'équation de l'adiabatique. Chimie : utilisation des lois de Raoult.

Mots-clés : Physique (post-élémentaire et supérieur)

Thermodynamique

Filière : Lycée et collège classique et moderne

Niveau : Post-élémentaire Élément parent : 2015.27.35

Autres descriptions : Nombre de pages : non paginé

Commentaire pagination: 9 p.

Langue : français Lieux : Paris

1/2

Antoinette G. (Mothematique	ion Sevoir J ves dementaires) Le 7 novembre 1924
	Devoir de Physique et Chinie
Mich /	Luelle serait la temperature finale d'une masse d'air prise à 0° quand on lui fait subir une détente adiabatique de 50 à 1 atmospher- On donne $\frac{c}{c} = \frac{3}{2}$
10	Sour résondre ce problème, on se sent des e relations suivantes. d'équation de l'adiabatique: pri = p'u' = ponstante
\	p et v étant la présion et le volume d'un gaz à une certaine température, p'et v' la pression et le volume de ce gaz à une autre température
	C'étant la chaleur spécifique du g as at pression constante et c la chaleur spécifi.