

Devoir de Physique

Numéro d'inventaire : 2025.0.78

Auteur(s): Michel Quellier

Type de document : travail d'élève

Période de création : 3e quart 20e siècle

Date de création : 1953

Matériau(x) et technique(s) : papier vergé | plume de métal

Description: Trois copies doubles non perforées, à réglure Séyès 8 x 8 mm avec marge rose. Pontuseaux verticaux et vergeures horizontales. Filigrane "Héraklès Vergé Alfa" d'après Bourdelle représentant le héros grec en position d'archer bandant son arc les jambes écartées entre deux rochers.

Mesures: hauteur: 22 cm; largeur: 17 cm

Notes : Il s'agit de la copie d'un devoir de Physique de Michel Quellier, élève en Première baccalauréat scientifique ou de classe de Mathématiques élémentaires (1ère C), scolarisé au lycée Marceau de Chartres durant l'année 1953-1954. L'évaluation remonte samedi 30 octobre 1953 et a été sanctionnée d'un 16/20.

Sujet : Un miroir sphérique connexe de 60 cm de rayon de courbure, a une surface réfléchissante limitée par un petit cercle de 6cm de rayon. Un observateur regarde d'un oeil dans le miroir, cet oeil est placé à 12 cm de l'axe principal et sa projection sur l'axe est à 60 cm du sommet principal. 1° Déterminer l'image de l'oeil dans le miroir. 2° On considère un plan normal à l'axe principal à 10 m en avant du miroir et l'on suppose que l'observateur regarde par réflexion les objets situés dans ce plan. Calculer en grandeur et en position la région du plan où se trouvent les points visibles, c'est-à-dire le champ du miroir. 3° Sans changer ni la place de l'observateur ni celle du plan d'observation, on substitue au miroir connexe un miroir plan, limité à sa circonférence de base. De combien le champ est -il réduit ?

Mots-clés : Physique (post-élémentaire et supérieur)

Lieu(x) de création : Chartres

Autres descriptions : Langue : Français

Nombre de pages : Non paginé Commentaire pagination : 12 p.

1/4

Bor down suble Lamech 30 octobre Guellier Michel Physique Un miroir sphérique connece de 60 cm de rayon de courbure, a une surface réfléchissant limitée par un petit cercle de 6 cm de rayon. Un observateur regarde d'un œil dans le mirois cet veil est place à 12 cm de l'asce principal et sa projection sur l'asce est à 60 cm du sommet principal. 11 Desterminer l'image de l'œil dans le 2% En considére un plan normal à l'asce principal à 10 m en avant du miroir et l'on suppose que l'observateur regarde par réflession les affets situés dans ce plan. Cabculer en grandeur et en position la région du plan ai se trouvent les points visibles, c'est à dire le champ

du mirair. 3' Sans changer mi la place of l'observateur micelle du plan d'abservation, on substitue au mirair commerce un mirair plan, limité à sa circonférence de base, le combien le champ est il reiluit? B' B' B' B' A' B B B B B B B B B B B B B
3,1 Sans changer mi la place of l'observateur micelle du plan d'abservation, on substitue au miroir comesce un miroir plan, limité à sa circonférence de base, le combien le champ est - sil reoluit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pf Soit p' = 60 x(-30) = 180020 cm L'image B' est une image virtuelle dent
3,1 Sans changer mi la place of l'observateur micelle du plan d'abservation, on substitue au miroir comesce un miroir plan, limité à sa circonférence de base, le combien le champ est - sil reoluit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pf Soit p' = 60 x(-30) = 180020 cm L'image B' est une image virtuelle dent
3,1 Sans changer mi la place of l'observateur micelle du plan d'abservation, on substitue au miroir comesce un miroir plan, limité à sa circonférence de base, le combien le champ est - sil reoluit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pf Soit p' = 60 x(-30) = 180020 cm L'image B' est une image virtuelle dent
3,1 Sans changer ni la place de l'observateur micelle du plan d'abservation, on substitue au miroir compie un miroir plan, limité à sa circonférence de base, le combien le champ est sil réduit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pt Soit p' = 60 x(-30) = 180020 cm L'image B' est une image virtuelle dent
3,1 Sans changer ni la place de l'observateur micelle du plan d'abservation, on substitue au miroir compie un miroir plan, limité à sa circonférence de base, le combien le champ est sil réduit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pt Soit p' = 60 x(-30) = 180020 cm L'image B' est une image virtuelle dent
3,1 Sans changer ni la place de l'observateur micelle du plan d'abservation, on substitue au miroir compie un miroir plan, limité à sa circonférence de base, le combien le champ est sil réduit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pt Soit p' = 60 x(-30) = 180020 cm L'image B' est une image virtuelle dent
3,1 Sans changer ni la place de l'observateur micelle du plan d'abservation, on substitue au miroir compie un miroir plan, limité à sa circonférence de base, le combien le champ est sil réduit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pt Soit p' = 60 x(-30) = 180020 cm L'image B' est une image virtuelle dent
3,1 Sans changer ni la place de l'observateur micelle du plan d'abservation, on substitue au miroir compie un miroir plan, limité à sa circonférence de base, le combien le champ est sil réduit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pt Soit p' = 60 x(-30) = 180020 cm L'image B' est une image virtuelle dent
micelle du plan d'abservation, on substitue au miroir comesce un miroir plan, limite à sa virconférence de base, le combien le champ est il reoluit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = n' st égal à : p' = Pf Sait p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
micelle du plan d'abservation, on substitue au miroir comesce un miroir plan, limite à sa virconférence de base, le combien le champ est il reoluit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = n' st égal à : p' = Pf Sait p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
micelle du plan d'abservation, on substitue au miroir comesce un miroir plan, limite à sa virconférence de base, le combien le champ est ail reoluit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' st égal à : p' = Pf Soit p' = 60×(-30) = 1800 = -20 cm L'image B' est une image virtuelle dont
micelle du plan d'abservation, on substitue au miroir comesce un miroir plan, limite à sa virconférence de base, le combien le champ est il reoluit? Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = n' st égal à : p' = Pf Sait p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
miroir connece un miroir plan, limite à sa circonférence de base, le combien le champ est - sil resoluit? Soit B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. AS = p = 60 cm A'C = A'S = f = 30 cm A'S = n' st égal à : p' = Pf Soit p' = 60×(->0) = 1800 = -20 cm L'image B' est une image virtuelle dont
miroir connece un miroir plan, limite à sa circonférence de base, le combien le champ est ail réshirt? Soit B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. AS = p = 60 cm A'C = A'S = f = 30 cm A'S = p' sit égal à : p' = Pf Soit p' = 60×(->0) = 1800 = -20 cm L'image B' est une image virtuelle dont
miroir connece un miroir plan, limite à sa circonférence de base, le combien le champ est ail réshirt? Soit B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. AS = p = 60 cm A'C = A'S = f = 30 cm A'S = p' sit égal à : p' = Pf Soit p' = 60×(->0) = 1800 = -20 cm L'image B' est une image virtuelle dont
circonférence de base, le combien le champ est il reiduit? B' C = F A' = 5 A Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'5 = p' est égal à : p' = Pt Soit p' = 60 x(-30) - 180020 cm d'image B' est une image virtuelle dont
circonférence de base, le combien le champ est il reiduit? B' C = F A' = 5 A Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'5 = p' est égal à : p' = Pt Soit p' = 60 x(-30) - 180020 cm d'image B' est une image virtuelle dont
circonférence de base, le combien le champ est il reiduit? B' C = F A' = 5 A Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'5 = p' est égal à : p' = Pt Soit p' = 60 x(-30) - 180020 cm d'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le mirair et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' st égal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le mirair et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' st égal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le mirair et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' st égal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A5 = p = 60 cm A'C = A'S = f = -30 cm A'S = p' est égal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = pt Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = pt Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = pt Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = pt Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = pt Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = pt Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = pt Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
Sait B' l'image de l'œil dans le miroir et A' la projection de B' sur l'asce principal. A'S = p = 60 cm A'C = A'S = f = -30 cm A'S = n' est egal à : p' = Pf Soit p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 cm L'image B' est une image virtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = $p' = 4 \text{ limage}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = $p' = 4 \text{ limage}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = p' est egal a' : $p' = \frac{pf}{f-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A5 = $p = 60 \text{ cm}$ A'C = A'S = $f = -30 \text{ cm}$ A'S = $p' = 4 \text{ limage}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image wirtuelle dont
A'C = A'S = $f = -30 \text{ cm}$ A'S = n' est egal a' : $p' = \frac{pf}{R-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
A'C = A'S = $f = -30 \text{ cm}$ A'S = n' est egal a' : $p' = \frac{pf}{R-f}$ Soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ Z'image 8' est une image virtuelle dont
A'5 = n' est egal à : $p' = \frac{pf}{p-f}$ soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
A'5 = n' est egal à : $p' = \frac{pf}{p-f}$ soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
A'5 = n' est egal à : $p' = \frac{pf}{p-f}$ soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
A'5 = n' est egal à : $p' = \frac{pf}{p-f}$ soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
soit $p' = \frac{60 \times (-30)}{60 + 30} = \frac{1800}{30} = -20 \text{ cm}$ L'image 8' est une image virtuelle dont
L'image 8' est une image virtuelle dont
L'image 8' est une image virtuelle dont
L'image 8' est une image virtuelle dont
L'image 8' est une image virtuelle dont
L'image 8' est une image virtuelle dont
da projection sur l'asce principal est à 20 cm
na projection sur i asce principal est a com

Guellier Mic	hel	
7 - 6		
Les	triangles B'I3	et B'MN sontsemblabes
on peu	t donc ecrire:	
	A'L - I 3 A'H - MN	au encare:
	60 = 12 1060 = MN	$MN = 2 \times 106$ $MN = 212 cm$
D		MN = 2, 12 mm
d		rair plan, le champ
du	mirair est ein cer	le dez,12 m de diamètre
The second secon		face du champ du
The second secon	est: π (3,06) ²	- Tr (100)2
p .un		6)2-(1,06)2]
		- 1,06) (3,06+1,06)
		4,12)
	= 6, 28 × 4	DESCRIPTION OF THE PROPERTY OF
7	= 25,87	m² de différence
T: 2	In miroir suherique	ce concarre a un rayon
de co	urbure egal å 6 m	e concare a un rayon, son asce est dirigé vers
	U	