

PEGC

Numéro d'inventaire : 2024.0.132

Auteur(s): Patrick Gaillard

Type de document : travail d'élève

Période de création : 4e quart 20e siècle

Date de création : 1974

Matériau(x) et technique(s) : papier | encre bleue

Description : Trois copies doubles d'examen à simple lignage avec partie supérieure à

massicoter.

Mesures: hauteur: 31,1 cm

largeur: 24 cm

Notes: Il s'agit de la copie d'examen au concours d'entrée dans les centres PEGC (Professeur d'Enseignement Général de Collège), du candidat Patrick Gaillard. L'auteur est alors élève en baccalauréat C (Mathématiques et physique-chimie), section 3. L'épreuve est une composition de mathématiques. Le centre d'examen est l'ENF ou ENI (Ecole Normale de Filles ou Ecole Normale d'Institutrices) se situant au 09, rue de Lille à Rouen. L'épreuve se déroule en mai 1974. La note obtenue est de 10,5/20, la moyenne du lot de copies dont elle est issue est de 10,25/20.

Mots-clés : Compositions et copies d'examens

Formation initiale et continue des maîtres (y compris conférences pédagogiques), post-

élémentaire

Lieu(x) de création : Rouen

Autres descriptions : Langue : Français

Nombre de pages : Non paginé

Commentaire pagination: 12 p. dont 11 p. manuscrites

	Nom et Prénom : GAILLARD Patrick			
	N° d'inscription : 49 Centre d'examen : EN.I Rouen			
collez ici après avoir				
Visa du Correcteur	Examen: P.E.G.C Session: 1974 Spécialité ou Série: Physique. Mathematique.	Si votre composition comporte plusieurs feuillets.		
Note: 10,5	Composition de Mathematiques			
	$\frac{1^{ier} \text{ exercice.}}{3^3 + 2(i-1)3^2 - 3i3 + i + 1 = 0}$			
	Los solution z = 1 est évidente			
	1+2(i-1)-3i3+i+1=0 $1+2i-2-3i3+i+1=0$ On peut donc factoriser le pohynome.			
	$-(3-1)(3^2+a_3-i-1)=0$	e C		
	$3^{3}-3^{2}+\alpha 3^{2}-\alpha 3-(i+1)3+i+1=0$			
	$g^{3} + (\alpha - 1)g^{2} - (\alpha + i + 1)g + i + 1 = 0$			
	a-1 = 2i-2, $a = 2i-1$ or $ti + 1 = 3i$			
	L'équation devient.			
	$(3-1)(3^{2}+(2i-1)3-i-1)=0$	6		
N. B	3 Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer la provenance de la c	copie.		

$\int_{0}^{2} + (2i-1)g - i - 1 = 0$ $A = (2i-1)^{2} + 4(i+1)$ $A = -4 - (2i+1) + 4i + 4i + 4i$ $A = 2i + 1$ $(a + i + b)^{2} - 2i + 1 \Rightarrow (a + i + b)^{2} + 2abi = 2i + 1 \Rightarrow (a + b)^{2} + 2ab$	
	$A = (2i - 1)^{2} + 4 (i + 1)$ $A = -4 - (2i + 1) + 4 + 4 + 4$ $A = 2i + 1$ $Colubras les trainet de A. (a + ib)^{2} - 2i + 1 \Rightarrow a^{2} - b^{2} + 2abi = 2i + 1 \Rightarrow a^{2} - b^{2} + 2abi = 2i + 1 \Rightarrow 2ab = 2. 4e aysteme devient X + Y = 1 4 \times Y = 4 \Leftrightarrow xy = -1 ab \Rightarrow 0 Xet Y cont les solutions de l'équation u^{2} - u = 1 + 0 S = 1 + 4 = 5 \Rightarrow 0 u_{1} = 1 + 0 s = 1 + 0 s = 1 + 0 2 \Rightarrow 0 u_{2} = 1 - 0 s = 1 + 0 2 \Rightarrow 0 u_{3} = 1 - 0$

	$a^{2} = 1 + \sqrt{5}$ e $b^{2} = \sqrt{5} - 1$ 2 $ab > 0$ $a = \sqrt{1 + \sqrt{5}}$ $b = \sqrt{5} - 1$ 2 au au
	$ab > 0$ $b = \sqrt{15-1}$ Yes solutions de l'équation inn'técoles sont donc $1 \sqrt{1+05} + i \sqrt{5-1} - \sqrt{1+05} i \sqrt{1+05}$ $2 \sqrt{2}$
	2 ienne escorcice. a) addition b) multiplication $ \overline{0} \ \overline{1} \ \overline{2} \ \overline{3} \ \overline{4} \ \overline{5} $ $ \overline{0} \ \overline{0} \ \overline{1} \ \overline{2} \ \overline{3} \ \overline{4} \ \overline{5} $ $ \overline{0} \ \overline{0}$
015	1 7 2 3 4 5 0 1 0 7 2 3 4 5 2 3 4 5 0 7 2 0 2 4 0 2 4 3 3 4 5 0 7 2 3 0 3 0 3 0 3 4 4 5 0 7 2 3 4 0 4 2 5 5 6 7 2 3 4 5 6 7 2
	$\begin{cases} \vec{3} \times + \vec{3} y = \vec{3} \\ \Rightarrow + \vec{2} y = \vec{1} \end{cases} \Rightarrow c = \vec{1} - \vec{2} y \\ \Rightarrow (\vec{1} - \vec{2} y) + \vec{3} y = \vec{3} \end{cases}$ $\begin{cases} x = \vec{1} - \vec{2} y \\ \vec{3} + \vec{3} y = \vec{3} \end{cases} \Rightarrow \begin{cases} y = \vec{0} \\ \Rightarrow \vec{1} = \vec{1} \end{cases}$