

mathématiques

Numéro d'inventaire : 2015.27.40.17

Auteur(s) : Antoinette Léon

Type de document : travail d'élève

Période de création : 1er quart 20e siècle

Date de création : 1924

Matériau(x) et technique(s) : papier ligné

Description: Réglure simple 8 mm. Manuscrit encre noire et crayon papier.

Mesures: hauteur: 22,6 cm; largeur: 17,5 cm

Notes : Devoir du 5 février 1924. - Trouver la dérivée d'une fonction; - Former l'équation du second degré qui a pour racines les côtés de l'angle droit d'un triangle rectangle, sachant que l'hypoténuse est égale à a, le rayon du cercle inscrit est égal à r. Existe-t-il toujours un triangle

rectangle remplissant ces conditions? **Mots-clés**: Calcul et mathématiques

Filière : Lycée et collège classique et moderne

Niveau : Post-élémentaire **Élément parent** : 2015.27.40

Autres descriptions : Pagination : non paginé

Commentaire pagination: 8 p.

Langue : français

Lieux : Paris

	M
Antornelle Le'o	n Se 5 fevrier 1924
5º. Secondavie	1924
	Mathèmatiques
4.	brower la dérivée de la fonction.
	$y = 3x^3 + 5x^2 + 2x - 1$
J.	
	donnons à a un accroissement dx=h
	la valeur fin ale de x est x+h
	four un accroissement Ax-h de la variable x, d
**	en resulter a four y un accroissement Ay = K
	la valeur fin de de la fonction est.
	$y + k = 3(x+h)^3 + 5(x+h)^2 + 2(x+h) - 1$
	y+ k= 3 x5 + 3h3, g x2h + gh2x +5x2 + 5h2 + 10xh + 2x + 2h - 1
	l'accrossement K de y est l'excesde la valeur priale
100	de la fonction sur la valeur initiale:
	$K = 3x^{3} + 3h^{3} + 9x^{2}h + 9h^{2}x + 5x^{2} + 5h^{2} + 10xh + 9x + 2h - 1 - 3x^{3}$
	-5 x2 - 1x + 1
	K= 3h3+gx2h+gh2x+10xh+5h2+2h
	$\frac{\kappa}{h} = 3h^2 + gx^2 + ghx + 10x + 5h + 2$
	limite K = y' = 9 se2 + 10 x + 2
	h